Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2'-Deoxyguaosine Versus 5',8-Cyclo-2'-Deoxyadenosines: A Theoretical Approach.

Identifieur interne : 000156 ( Main/Exploration ); précédent : 000155; suivant : 000157

Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2'-Deoxyguaosine Versus 5',8-Cyclo-2'-Deoxyadenosines: A Theoretical Approach.

Auteurs : Boleslaw T. Karwowski [Pologne]

Source :

RBID : pubmed:32059490

Abstract

Approximately 3 × 1017 DNA damage events take place per hour in the human body. Within clustered DNA lesions, they pose a serious problem for repair proteins, especially for iron-sulfur glycosylases (MutyH), which can recognize them by the electron-transfer process. It has been found that the presence of both 5',8-cyclo-2'-deoxyadenosine (cdA) diastereomers in the ds-DNA structure, as part of a clustered lesion, can influence vertical radical cation distribution within the proximal part of the double helix, i.e., d[~oxoGcAoxoG~] (7,8-dihydro-8-oxo-2'-deoxyguaosine - oxodG). Here, the influence of cdA, "the simplest tandem lesion", on the charge transfer through ds-DNA was taken into theoretical consideration at the M062x/6-31+G** level of theory in the aqueous phase. It was shown that the presence of (5'S)- or (5'R)-cdA leads to a slowdown in the hole transfer by one order of magnitude between the neighboring dGoxodG in comparison to "native" ds-DNA. Therefore, it can be concluded that such clustered lesions can lead to defective damage recognition with a subsequent slowing down of the DNA repair process, giving rise to an increase in mutations. As a result, the unrepaired, oxodG: dA base pair prior to genetic information replication can finally result in GC TA or ATCG transversion. This type of mutation is commonly observed in human cancer cells. Moreover, because local multiple damage sites (LMSD) are effectively produced as a result of ionization factors, the presented data in this article might be useful in developing a new scheme of radiotherapy treatment against the background of DNA repair efficiency.

DOI: 10.3390/cells9020424
PubMed: 32059490
PubMed Central: PMC7072346


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2'-Deoxyguaosine Versus 5',8-Cyclo-2'-Deoxyadenosines: A Theoretical Approach.</title>
<author>
<name sortKey="Karwowski, Boleslaw T" sort="Karwowski, Boleslaw T" uniqKey="Karwowski B" first="Boleslaw T" last="Karwowski">Boleslaw T. Karwowski</name>
<affiliation wicri:level="1">
<nlm:affiliation>DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz</wicri:regionArea>
<wicri:noRegion>90-151 Lodz</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32059490</idno>
<idno type="pmid">32059490</idno>
<idno type="doi">10.3390/cells9020424</idno>
<idno type="pmc">PMC7072346</idno>
<idno type="wicri:Area/Main/Corpus">000148</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000148</idno>
<idno type="wicri:Area/Main/Curation">000148</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000148</idno>
<idno type="wicri:Area/Main/Exploration">000148</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2'-Deoxyguaosine Versus 5',8-Cyclo-2'-Deoxyadenosines: A Theoretical Approach.</title>
<author>
<name sortKey="Karwowski, Boleslaw T" sort="Karwowski, Boleslaw T" uniqKey="Karwowski B" first="Boleslaw T" last="Karwowski">Boleslaw T. Karwowski</name>
<affiliation wicri:level="1">
<nlm:affiliation>DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz</wicri:regionArea>
<wicri:noRegion>90-151 Lodz</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cells</title>
<idno type="eISSN">2073-4409</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Approximately 3 × 10
<sup>17</sup>
DNA damage events take place per hour in the human body. Within clustered DNA lesions, they pose a serious problem for repair proteins, especially for iron-sulfur glycosylases (MutyH), which can recognize them by the electron-transfer process. It has been found that the presence of both 5',8-cyclo-2'-deoxyadenosine (cdA) diastereomers in the ds-DNA structure, as part of a clustered lesion, can influence vertical radical cation distribution within the proximal part of the double helix, i.e., d[~oxoGcAoxoG~] (7,8-dihydro-8-oxo-2'-deoxyguaosine -
<sup>oxo</sup>
dG). Here, the influence of cdA, "the simplest tandem lesion", on the charge transfer through
<i>ds</i>
-DNA was taken into theoretical consideration at the M062x/6-31+G** level of theory in the aqueous phase. It was shown that the presence of (5'
<i>S</i>
)- or (5'
<i>R</i>
)-cdA leads to a slowdown in the hole transfer by one order of magnitude between the neighboring dG
<sup>oxo</sup>
dG in comparison to "native"
<i>ds</i>
-DNA. Therefore, it can be concluded that such clustered lesions can lead to defective damage recognition with a subsequent slowing down of the DNA repair process, giving rise to an increase in mutations. As a result, the unrepaired,
<sup>oxo</sup>
dG: dA base pair prior to genetic information replication can finally result in GC TA or ATCG transversion. This type of mutation is commonly observed in human cancer cells. Moreover, because local multiple damage sites (LMSD) are effectively produced as a result of ionization factors, the presented data in this article might be useful in developing a new scheme of radiotherapy treatment against the background of DNA repair efficiency.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32059490</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2073-4409</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Cells</Title>
<ISOAbbreviation>Cells</ISOAbbreviation>
</Journal>
<ArticleTitle>Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2'-Deoxyguaosine Versus 5',8-Cyclo-2'-Deoxyadenosines: A Theoretical Approach.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E424</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/cells9020424</ELocationID>
<Abstract>
<AbstractText>Approximately 3 × 10
<sup>17</sup>
DNA damage events take place per hour in the human body. Within clustered DNA lesions, they pose a serious problem for repair proteins, especially for iron-sulfur glycosylases (MutyH), which can recognize them by the electron-transfer process. It has been found that the presence of both 5',8-cyclo-2'-deoxyadenosine (cdA) diastereomers in the ds-DNA structure, as part of a clustered lesion, can influence vertical radical cation distribution within the proximal part of the double helix, i.e., d[~oxoGcAoxoG~] (7,8-dihydro-8-oxo-2'-deoxyguaosine -
<sup>oxo</sup>
dG). Here, the influence of cdA, "the simplest tandem lesion", on the charge transfer through
<i>ds</i>
-DNA was taken into theoretical consideration at the M062x/6-31+G** level of theory in the aqueous phase. It was shown that the presence of (5'
<i>S</i>
)- or (5'
<i>R</i>
)-cdA leads to a slowdown in the hole transfer by one order of magnitude between the neighboring dG
<sup>oxo</sup>
dG in comparison to "native"
<i>ds</i>
-DNA. Therefore, it can be concluded that such clustered lesions can lead to defective damage recognition with a subsequent slowing down of the DNA repair process, giving rise to an increase in mutations. As a result, the unrepaired,
<sup>oxo</sup>
dG: dA base pair prior to genetic information replication can finally result in GC TA or ATCG transversion. This type of mutation is commonly observed in human cancer cells. Moreover, because local multiple damage sites (LMSD) are effectively produced as a result of ionization factors, the presented data in this article might be useful in developing a new scheme of radiotherapy treatment against the background of DNA repair efficiency.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Karwowski</LastName>
<ForeName>Boleslaw T</ForeName>
<Initials>BT</Initials>
<AffiliationInfo>
<Affiliation>DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cells</MedlineTA>
<NlmUniqueID>101600052</NlmUniqueID>
<ISSNLinking>2073-4409</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">5′,8-cyclo-2′-deoxyadenosines</Keyword>
<Keyword MajorTopicYN="Y">Base Excision Repair</Keyword>
<Keyword MajorTopicYN="Y">Charge transfer</Keyword>
<Keyword MajorTopicYN="Y">Clustered DNA damage</Keyword>
<Keyword MajorTopicYN="Y">DFT</Keyword>
<Keyword MajorTopicYN="Y">Glycosylases</Keyword>
</KeywordList>
<CoiStatement>The author declares no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32059490</ArticleId>
<ArticleId IdType="pii">cells9020424</ArticleId>
<ArticleId IdType="doi">10.3390/cells9020424</ArticleId>
<ArticleId IdType="pmc">PMC7072346</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Biochim Pol. 2009;56(4):655-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19830274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1856-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Sep 5;277(5331):1453-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9278503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2019 Mar 12;15(3):2042-2052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30681847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2010 May 6;114(17):5886-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20394358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Jul 11;39(27):8026-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2005 May 5;109(17):3991-4004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16833721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Res. 2013 Jul;180(1):100-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23682596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Radiat Biol. 1997 Aug;72(2):147-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9269307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2010 Oct 12;6(10):3131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26616775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2015 Sep 7;17(33):21507-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26219639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemphyschem. 2006 Sep 11;7(9):1885-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3832-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10759556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2016 Jan;231(1):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26040249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Oct 14;44(18):8588-8599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27587587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Res. 2002 May;157(5):589-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11966325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2013 Nov 19;46(11):2616-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23805774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ther Adv Med Oncol. 2018 Jul 13;10:1758835918786658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30023007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2004 Mar 4;3(3):289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15177044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Radiat Biol. 1988 Aug;54(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2900276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Med. 2013 May;29(3):233-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22613369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2014 Dec 4;118(48):13833-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25390766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Feb 12;427(6975):652-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14961129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2005 Jun 30;109(25):5656-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16833898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Sci Space. 2004 Dec;18(4):206-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15858387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2011 Feb 18;50(8):1820-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21328647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2018 Jun;52:120-125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29587168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W240-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Res. 2001 Nov;156(5 Pt 2):577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11604075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2001 Mar 14;28(3):199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10411879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 May 15;90(10):4338-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8506271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Radiat Biol. 1990 Nov;58(5):759-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1977820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):e67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21300462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2008 Jan;4(1):30-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18075671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2005 Nov;105(11):4009-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16277369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(15):5165-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Jul 2;130(26):8377-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18528991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Nov 12;125(45):13658-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14599193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2012 Feb 14;8(2):527-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26596602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2012 Aug 9;116(31):9409-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22793263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2019 Oct 23;8(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31652769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2019 May 28;8(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31141888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Aging Sci. 2018;11(2):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29552989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther Nucleic Acids. 2018 Dec 7;13:665-685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30500729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2010 Apr 7;8(7):1603-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2011 Jun 3;711(1-2):134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21130102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2007 Dec 10;26(56):7717-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18066083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2008 Apr;12(2):229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18314014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Sep;38(16):5280-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20430827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2011 Jun 3;711(1-2):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21185841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Apr 8;47(14):4306-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18341293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Feb 20;27(4):589-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18285820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2004 Apr;104(4):1977-2019</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15080719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2018 Feb 14;20(7):4997-5000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29387844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2012 Feb;121(1):1-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22048164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2017 Jun 8;8(37):62742-62758</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28977985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Mol Pharmacol. 2012 Jan;5(1):3-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22122461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2013 Sep 16;26(9):1361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23961697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2019 Oct;53(9-10):1014-1018</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31514561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2015 Jun 24;115(12):5678-796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25853797</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Karwowski, Boleslaw T" sort="Karwowski, Boleslaw T" uniqKey="Karwowski B" first="Boleslaw T" last="Karwowski">Boleslaw T. Karwowski</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000156 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000156 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32059490
   |texte=   Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2'-Deoxyguaosine Versus 5',8-Cyclo-2'-Deoxyadenosines: A Theoretical Approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32059490" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020